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Abstract. Information dynamics is discussed from the point of view of microscopic thermal flow.
In the fields of learning, association, storage and so on, the concepts of neural networks (NNWs)
have been widely used. Their neurodynamics have been investigated as a stochastic process of an
infinite neuron system, using the replica method. This approach includes unsettled points; regimes
where replica symmetry (RS) solutions and replica symmetry breaking (RSB) solutions are valid,
low-dimensional behaviour regimes, and so forth.

First, to make them clear, using supersymmetry (SUSY) fields the dynamics of NNWs are
investigated for a family of NNWs interacting among m neurons. The dynamics of the system
are supposed to be specified according to the Langevin dynamics with Gaussian white noise (i.e. a
random influence from the surroundings) under an environmental parameter β (such as the inverse
temperature). The results obtained without ambiguity are as follows: the RS solutions are valid in
the regime where our solutions satisfy the fluctuation–dissipation theorem (FDT), while the RSB
solutions appear in the SUSY-breaking regime. As a function of the environmental parameter, the
system displays transitions from usual (ergodic) phases to phases with broken ergodicity.

Secondly, the information dynamics of NNW is derived as the microscopic thermal flow.

1. Introduction

The aims of the study of neural networks (NNWs) are to find and to construct some of the best
networks with human functions, e.g. learning, association and storage on one side and to derive
the relation of the information dynamics to the microscopic thermal flow on the other side.
Models of NNWs have been generalized as far as possible with a set of external parameters.
Methods for analysing them have also been improved with various methods, e.g. the replica
and Monte Carlo methods for studying their stochastic dynamics [1–11]. Characteristics of
the system can be specified from various points of view, but here we restrict to aQ (quenched)
case; randomly choosing one pattern out of a set of patterns {ξ} we average neural quantities
over the neuron state variables {s} under the randomly chosen pattern, i.e. we regard the neuron
pattern (state) variables as the slow (fast) variables of the system (respectively). In thisQ-case
the replica method is one of the best available methods. The average cost function (free energy)
is written as

〈〈lnZ〉〉 = lim
n→0

[〈〈Zn〉〉 − 1]/n (1.1)

where Zn denotes the n replicas of the system (a partition function), whose variables {si} are
replicated as {sαi } (α = 1, 2, . . . , n). From the mathematical point of view, the expression
(1.1) is identity for Z positive, otherwise it is wrong. Physically, the range of validity of
(1.1) should be determined and restricted from the dynamical instability of the system. The
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boundary between the replica symmetry (RS) and the replica symmetry breaking (RSB) states
is called the AT line, and its systematic determination is done by the system instability within
the framework of the replica theory. It needs to be shown that the results derived in this theory
coincide with those evaluated by another theoretical formalism, on one hand, and also that
their behaviours are related to a traditional relation, such as the microscopic thermal flow (heat
transfer equation), on the other hand. These subjects are investigated in this paper.

The first subject will be made clear in sections 2–4, using a powerful and systematic
method, the supersymmetry (SUSY) field method for the evaluation of the characteristics of
the NNWs [7]. In terms of the SUSY fields we study the stochastic dynamics of a family of
generalized NNWs interacting among m (� 2) neurons in the Q-phase. The SUSY theory
shows that the RS theory gives valid results only in the regime where the fluctuation–dissipation
theorem (FDT) holds.

In section 2 the model NNWs are specified—so-called generalized soft m-neuron models
[4–6]. There a neuron state si(t + 1) in the ith neuron at time t + 1 is determined using the sum
of products among different m-multiplicative sets of patterns and neuron states at time t over
all different combinations of neurons. The neuron state is assumed to take continuous values.
In the case of a neuron state with two values (±1) we introduce a neuron state probability with
sharp double peaks and obtain the same results as in the discrete neuron case.

In section 3 a method of SUSY stochastic dynamics is developed. In order to avoid
the replica method and to take the random average systematically, we introduce fermions
and SUSY fields [3, 7]. The generalized partition function of the SUSY stochastic-dynamic
system and the important fluctuation–dissipation theorem and causality relation are derived.
It is shown that the two-neuron correlation function in the superspace contains the two-neuron
correlation and response functions of the neuron system.

In section 4 the results for the cases of m = 2 and m > 2 are derived and discussed in
subsections 4.1 and 4.2, respectively. The first and the second cases have already been studied
in [2, 4] and [2, 5, 6], respectively, in terms of the replica method. It is shown that the SUSY
stochastic dynamics yield the same results as those obtained using the replica method and
that the stability of the system, the RSB regime, and so on can be easily discussed without
ambiguity.

Secondly, the second subject is investigated by taking into account the fact that fluctuations
of neuron states are subject to the central limit theorem in systems with large numbers of
neurons N 	 1. From this we derive the relation of the information dynamics (discussed in
sections 2–4) to the microscopic thermal flow in section 5. The essential contributions of the
information dynamics are concluded to be derived from the concept of the microscopic thermal
flow. The informational flows correspond to it. (a) The pure states are associated with the
metastable multivalleys of the system potential. (b) The overlapping parameters correspond to
the overlap between their valleys. (c) The distribution of barriers and valleys in the potential,
i.e. the distribution of the local temperatures in space, strongly affects the system behaviour.
All behaviours are understood as the microscopic thermal flow.

Finally, concluding remarks are summarized in section 6.

2. Model neural networks

Various types of NNW models have been constructed and their properties have been
investigated. Many of them are widely used in the fields of artificial intelligence, computer
science and engineering. In order to be able to discuss properties of NNWs in various structures
we consider the generalized soft m-neuron models (m � 2) specified by the following cost
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function:

E = −
∑

1�i1...im�N

∑
Ji1...imsi1...sim − h

∑
1

si + h{s} (ik = ik for k = 1, . . . , m)

(2.1)

where the interactions acting among neurons are assumed to be expressed as for the Hopfield
network,

Ji1...im = 1/N
p∑

µ=1

ξ
µ

i1 . . . ξ
µ

im (il, . . . , im different neuron). (2.2)

Note that the successive subscripts, e.g. ik denote ik (k = 1, . . . , m) in this paper. When we
consider a layered-structural NNW, the sum over the combination of il, . . . , im means that
we choose all possible different sets {il, . . . , im} out of neurons on each layer. In the case of
mutually connective NNWs it means that all possible, different sets {il, . . . , im} are selected
from the total number of neurons N of the system.

The NNW system learnsp patterns, denoted by {ξµ} (µ = 1, 2, . . . , p) (whose component
ξµ is given with discrete values ±l). As a teacher pattern, one pattern is chosen randomly out
of the pattern set {ξ} and we consider the neuron signals (states) {s} at time t as the recalling
process.

The neuron state variables {s} are assumed to be of continuous variables. (Even if they are
of discrete variables, the obtained results do not change within the approximation of quadratic
form in {s}.) To do so, the neuron value probability h{s} is introduced for the spherical model:

h{s} = δ

(∑
i

s2
i −N

)
. (2.3)

Here the spherical probability is chosen only for simplicity of explanation of the SUSY
dynamics, but our method is also applicable to various cases, e.g. probabilities with multiple
peaks (which mean that s = 0,±1,±2, . . .) such as

h{s} =
∑
i

[1/2r0s
2
i + us4

i ] (2.4)

for double peaks.

3. Method of SUSY stochastic dynamics

Neuron systems such as the brain are constructed from enormous number of neurons. The
neurodynamics of such systems can be studied within the framework of the Langevin dynamics
with an environmental (inverse temperature) parameter β

�−1
0 dsi/dt = −∂(βE)/∂si + νi(t) (3.1)

where the Gaussian random (noise) variables {ν} with zero mean (〈ν(t)〉 = 0) and variances

〈νi(t) νi(t ′)〉 = 2/�0δij δ(t − t ′) (3.2)

are introduced. The average 〈· · ·〉 is taken over the Gaussian distribution characterized with a
parameter �0.

The probability of finding the system in a point {s} of phase space, P(s, t), evolves in
time according to the Fokker–Planck (FP) equation:

∂P/∂t = �0

∑
i

∂/∂si[∂/∂si + β∂E/∂si]P. (3.3)
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We rewrite this FP equation, using the SUSY fields (A.13) in appendix A, as

Z =
∫
D[φ]e−Sk−Sp

Sk ≡ − 1
2

∫
dθ dθ̄ dt

∑
i

φiD
(2)φi

Sp ≡
∫

dθ dθ̄ dt E(φ)

(3.4)

where Sk ≡ Sk and Sp ≡ Sp denote the kinetic and potential terms, respectively.
From the information of the SUSY correlation function 〈Q(a, b)〉 in (A.17), all

properties of the correlation and response functions of neuron systems such as 〈si(ta) si(tb)〉,
〈si(ta) pi(tb)〉, etc are derived.

4. Results: qualities of NNWs

4.1. Case of a synaptic junction of order m = 2

We consider the neural system of order m = 2 in expression (2.1). An equilibrium state {s} of
the system is characterized by the mean overlap with the set of stored patterns {ξµ}

mµ = 1/N
∑
i

ξ
µ

i 〈si〉. (4.1)

As only k components of the overlap vector {mµ} are non-vanishing in the limit N → ∞, we
consider the case k = 1, i.e. the pattern µ = 1 (µ = 2, . . . , p) corresponds to the recalling
(non-recalling) pattern (respectively). This means m1 ∼ 1 and mµ ∼ 0 (µ = 2, . . . , p).
Besides the overlap parameters (OPs) {mµ}, two further OPs are concerned;

r = N/p

p∑
µ>k

〈〈(mµ)2〉〉 (here k = 1) p =
〈〈

1/N
∑
i

〈si〉2

〉〉
. (4.2)

Applying the SUSY stochastic dynamics to this neural system, we obtained fundamentally
important properties of the NNW system within the framework of the saddle-point
approximation in the limit N → ∞ (see appendix B), which coincide with those derived
in terms of the replica method [4].

Let us summarize the important results obtained.

4.1.1. Discrete limit of neuron states s = ±1. The set of coupled equations for OPs {m, q, r}
are given from (B.18) and (B.19) as

m =
∫
Dz th β(z(αr)1/2 + m)

q =
∫
Dz th2 β(z(αr)1/2 + m)

r = q/[1 − β(1 − q)]2

(4.3)

where Dz is defined below (B.18).
The three eigenvalues of the quadratic fluctuations around the saddle point are of the

non-degenerate eigenvalue )1, and twofold degenerate one )2;

)1 = β[1 − β(1 − q)]−2 )2 = )1 − 2β2q[1 − β(1 − q)]−3 (4.4)
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which are given in (B.24). The positive, maximum eigenvalue stabilizes the symmetric system,
while negative eigenvalues make the system inverse (i.e. symmetry breaking).

Furthermore, the eigenvalues of the stability matrix for the symmetric solutions (which
correspond to the RS solutions) are obtained in (B.28) and (B.29) as

λ± = αβ[−(u + v)± {(u− v)2 + 4}1/2] (4.5)

where

u ≡ αβ2〈〈(1 − 〈s〉2)2〉〉 v ≡ [1 − β(1 − q)]−2. (4.6)

For β < 1/(1 − q), the eigenvalue λ− is negative, while λ+ > 0 if uv < 1, otherwise
λ+ < 0; that is, uv = 1 gives the boundary of instability to the symmetry breaking regime. If
the temperature T is higher than the glass-phase temperature Tg , the symmetric solutions are
stable because uv < 1.

From the functional point of view of the NNWs, the fundamental properties are
summarized as follows. It is considered that the environment parameter β expresses the
influence of the environment of the NNW or the ability of the neurons. The characteristics
of the system are specified according to values of β; the limit β → ∞ corresponds to the
ideal perfect case and β → 0 to the opposite case. From the numerical computation for three
coupled equations in (4.3) the following conclusions are summarized.

(a) The maximum storage capacity αc
∼= 0.138 exists in the limit β → ∞, i.e. α < αc for

any β and in such small-α regimes the retrieval OP m has larger values than m ∼= 0.973
and behaves like

m = 1 − exp(−1/2α). (4.7)

(b) As the average percentage of errorsNe/N is defined as (1−m)/2, the NNW can effectively
retrieve the teacher pattern in the regime below αc, while it reaches the unconscious state
(50% errors) near αc or near TM :

Ne/N
∼= (α/2π)1/2 exp[−1/2α] (β → ∞, α small)

TM
∼= (αc − α)/coαc (co

∼= 0.18)
(4.8)

which are derived using the asymptotic behaviour of the error function.
(c) The transition temperature Tg from the disordered neuron phase to the neuron glass (NG)

phase is expressed as

Tg(α)
∼= 1 + α1/2 (4.9)

from the leading term for q,

q ∼= β2αq/(1 − β)2. (4.10)

(d) Below Tg(α), the line TM(α) appears, below which the retrieval solutions become locally
stable, i.e. they have a macroscopic overlap with the teacher patterns. This shows that the
dynamical behaviour of the system changes discontinuously according to the appearance
of these metastable states, where

TM(α)
∼= 1 − 1.95α1/2 (T ∼ 1, α small). (4.11)

(e) BelowTM(α), the system has the lineTc(α) below which the retrieval solutions are globally
stable, down to T = 0. This transition temperature Tc(α) is determined by equating the
cost functions (free energies) of the NG and the retrieval states:

Tc(α)
∼= 1 − 2.6α1/2 (T ∼ 1, α small). (4.12)
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(f) The retrieval states become unstable to the symmetric solutions below the temperature
TAT(α) which is determined from uv = 1 in (4.5) and (4.6) as

TAT(α)
∼= (8α/9π)1/2 exp(−1/2α). (4.13)

(g) The nature of the neuron system with the SB can be studied in terms of the SUSY stochastic
dynamics.

(h) The non-ergodic behaviour, i.e. the chaotic behaviour appears in regimes which are
unstable to the symmetric solutions. (These two results are discussed in a separate paper.)

4.1.2. General cases of a continuous neuron state. Using the expression (B.16) in place of
(B.17), with the neuron state probability h{s}, e.g. with multi-peaks, we can derive similar
relations to those described above but we omit them here.

4.2. Case of a synaptic junction of order m = λ + 1

Microscopic studies of neural tissue, e.g. the brain, have shown that models of neurons which
interact through simple synaptic contacts with efficacy Jij are oversimplified. In general,
two or more axonal branches jointly contact like a dendrite and form a synaptic junction of
higher order. The postsynaptic potential at time t + 1 is influenced if the incoming activation
signals at time t are correlated. Such correlations are described in a multiplicative form of the
neuron variables si . Then the Hopfield model is generalized to this more general situation by
introducing the local field hi :

hi =
∑
[J ]

Jij1...jλsj1 . . . sjλ (jk = jk for k = 1, . . . , λ) (4.14)

where [J ] denotes summation over j1 < · · · < jλ �= i. We study the case of the spherical
model for JiJ

‖Ji‖2 =
∑
[J ]

J 2
iJ = N−1Cλ ≡ M (4.15)

whose binomial coefficient M corresponds to the number of λ synapses coupling to a given
neuron (N − 1), and JiJ denotes Jij1...jλ. The embedding condition, which guarantees the
local stability of pattern µ at site i, is generalized to

γ
µ

i [J ] = (ξ
µ

i /‖Ji‖)
∑
[J ]

JiJ ξ
µ

j1 . . . ξ
µ

jλ > κ (jk = jk for k = 1, . . . , λ) (4.16)

using the threshold value κ of neurons.
We consider the limit β → ∞ (an ideal neuron system without the influence of the

environment). From the local stability condition (4.16), the cost function Hi[J ] and the
partition function Zi at the ith neuron are specified in (C.2) and (C.3). The OP in the replica
space (C.4) is defined.

This model NNW corresponds to the spherical model [5] for m = 2 and the Kohring
model [6] for m = λ + 1.

In order to study by means of the SUSY stochastic dynamics, a change of variables
(C.5) is made. For the final expression for the partition function (C.7), using the saddle-point
approximation in the limit N → ∞, we found the symmetric solutions (C.8) and studied both
the static and the dynamic properties of the neuron system.

Let us summarize the important results obtained.
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4.2.1. Static properties.

(S1) The storage capacity (the maximum value α for a given κ) is expressed, using (C.7) and
(C.12), as

α = lim
N→∞

p/M =
[ ∫ ∞

−κ
Dt(t + κ)2

]−1

. (4.17)

It has the famous maximum value α = 2. This situation including (4.17) is independent
of the order of interactions m.

(S2) The eigenvalues of the quadratic fluctuations around the saddle point consist of the non-
degenerate eigenvalues )1 and the doubly degenerate eigenvalue )2 in (C.16). They
are also independent of the interaction order m.

From these facts (S1) and (S2) the SUSY stochastic dynamics yield the same results as
those obtained by the replica method [6], in the RS regime.

4.2.2. Dynamic properties. As the dynamics of the neuron system we specify the relation
(C.17).

(D1) The retrieval OP is expressed as (C.18), which also coincides with that derived by the
replica method [6].

5. Relation of information dynamics to microscopic thermal flow

Essential contributions of the information dynamics are shown to be derived from the principle
of microscopic thermal flow.

For simplicity of the description we introduce the reduced cost function (free energy) W ,
the partition function Z and the reduced energy E for any time t , as

W ≡ lnZ Z ≡
∑

eE E ≡ −βH =
∑
i �=j

Jij SiSj +
∑
i

HiSi (5.1)

where Jij corresponds to the Hopfield interaction (m = 2) in (2.2). The system potential
consists of multivalleys {α∗}. For each valley α∗ the mean-field cost function (free energy) W
and its deviation dW are derived as

W =
∑
i

A(Xi) +
∑
i

(Hi −Xi)A
′(Xi) +

∑
i �=j

JijA
′(Xi)A

′(Xj )

dW = µ∗ dA′(Xi) + σ ∗ dB ≈ (µ∗ − σ ∗2/2) dA′(Xi) + σ ∗ dB
(5.2)

where Xi = Hi + 2
∑

i �=j JijA
′(Xj ) with the OP A′(Xi) = Mi at the metastable point,

µ∗ = Hi − Xi and σ ∗ dB the stochastic fluctuations. Note that the valley subscript α∗ is
omitted for simplicity. Here the fact dA′ = (dB)2 was used based on the central limit theorem.
Let us eliminate the fast stochastic fluctuations in the cost function (free energy) for the variation
=A′(Xi) from the metastable values

(∂W/∂Z)=Z −=W = [−∂W/∂A′(Xi)− 1/2σ ∗2∂2W/∂(lnZ)2]=A′(Xi) (5.3)

which should be proportional to [(∂W/∂Z)Z −W ]=A′(Xi). Introducing the proportionality
constant p∗ leads to a kind of deterministic equation for the slow variables

∂W/∂A′(Xi) + 1/2σ ∗2∂2W/∂(lnZ)2 + p∗∂W/∂ lnZ = p∗W. (5.4)
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By the change of variables x ≡ A′(Xi1) − A′(Xi) and u ≡ ln(Z/Z1) + (p∗ − σ ∗2/2)x, the
solution can be derived as

W = e−p∗xw(u, x)

w(u, x) = Z

∫ ∞

−Y2
Dv − Z1e−p∗x

∫ ∞

−Y1
Dv

(5.5)

where
∫∞
−α Dv ≡ ∫∞

−α exp(−v2/2) dv/(2π)1/2, Y2 ≡ Y2 ≡ (u + σ ∗2x)/(σ ∗x1/2), Y1 ≡
Y1 ≡ u/(σ ∗x1/2) and the subscript 1 denotes the initial value. Note that the function w(u, x)
corresponds to the heat transfer equation

wuu − 2σ ∗−2wx = 0. (5.6)

Therefore, the informational flows are subject to the principle of microscopic thermal flow
in each valley α∗. This fact means that certain local-temperature distributions appear in the
systems. An associated multivalley potential is induced. Microscopic thermal flows are found
both globally and locally. (a) The global, slow behaviour of the systems is subject to the heat
transfer equation (5.6) (described with x and u above (5.5)) for the coarse-grained variables
〈x〉 and 〈u〉 over the fast variables, respectively. (b) The microscopic, slow behaviour in each
valley α∗ is also derived from the microscopic heat transfer equation (5.6) using the associated
variables xα and uα coarse-grained over the scale-dependent fast variables. (c) Also for a
higher step of the RBS regime, this computing process can be iterated until the neuron number
contained in the associated valleys breaks the relation of the central limit theorem. That is,
the method described above can be applicable to the evaluation of the systems’ behaviour for
any step of the RSB regime. (Of course, the systems’ behaviour in the RS regime corresponds
to that derived in this paper without computing iteratively.) (d) The reduced energy terms in
the second relation of (5.1) are interpreted to express the energy-transfer mechanism in the
heat transfer system. The information transfer of the systems is done using the principle of
microscopic thermal flow. Its adaptively intelligent control can be performed by the external
fields, using the mesoscopic critical behaviour for each valleyα∗ derived by the renormalization
theory.

6. Concluding remarks

From the results obtained in the previous sections in addition to appendices A–C, the following
concluding remarks are summarized.

(a) The SUSY stochastic dynamics have been established for neuron systems.
The features of the SUSY stochastic treatment are as follows.

1. Introduce both fermion and SUSY fields instead of replicating the system.
2. The stability of the system can be discussed using the FDT.
3. The contributing terms must satisfy the causality relation.
4. Within the framework of the saddle-point approximation of the model NNWs

investigated in section 4, the SUSY stochastic dynamics derived the same results
as those obtained by the replica method.

5. The boundary between the RS and the RSB states coincides with the TAT(α) line.
6. The SUSY stochastic treatment is very powerful for deriving solutions, they are almost

as good as the rigorous solutions derived by means of the renormalization method.
This is the first reason why the SUSY method is powerful.



Information dynamics of neural networks 8397

(b) The replica treatment, inspite of the tricky treatment to replicate the system, was shown
to give good results in the RS regime.

1. Both the static and dynamic behaviours are valid in the RS regime.

2. The stability of the RS states, evaluated with eigenvalues of the quadratic fluctuations
around the saddle point, gives true results.

3. The boundary of the instability to the RSB is expressed as the TAT(α) line.

That is, from these facts the SUSY stochastic treatment as well as the replica treatment
were shown to be very simple and powerful methods to investigate the quality of NNWs.
This is the second reason for using both methods.

Below the TAT(α) line, we can expect the existence of many phases where various kinds
of RSB states and low-dimensional behaviours appear. They are discussed in a separate
paper by referring the characteristic scale of the associated modes as discussed in section 5.
This is the third reason.

The features of the properties in the generalized NNWs of interaction order m have been
investigated and summarized in section 4. Their features coincide with those obtained in the
replica treatment.

A great development in the study of neurodynamics [11] was brought about by
reconsidering both the slow variables {ξ} in the heat bath T ′ and the fast variables {s} in
the heat bath T . Here {ξ} denotes a set of teacher patterns and {s} a set of neuron states. The
(temperature) ratio T/T ′ (≡ η) corresponds to the replica index n. The results reported in
[11] coincide with those obtained by us using the SUSY method without knowledge of the
existence of [11].

Finally, section 5 can be summarized as follows. (a) According to every characteristic scale
of the reference modes, the information dynamics of the systems are subject to the principle
of the corresponding microscopic thermal flow and fluctuate around a kind of associated
deterministic behaviour. (b) This computing method is also applicable to any higher-step RSB
regime and is iterated until the reference characteristic scale reaches a scale size where the
central limit theorem breaks down. (c) The mesoscopic critical behaviours of the systems
may be evaluated by the renormalization theory. (d) The information flows of the system can
be adaptively controlled through the external fields, using the mesoscopic critical behaviours
derived.

From the concluding remarks summarized above, the following points are stressed. It
was shown that the SUSY and the replica formalisms yield the same, true results and that their
behaviours are subject to the principle of microscopic thermal flow. The points in which the
SUSY formalism is powerful and systematic are concerned with it being renormalizable and
that the main correlation and response functions can be evaluated systematically according
to the associated algebra. Furthermore, how to treat the RSB regime is also expected to be
solvable by the similarity or conformal transformation. In this process the renormalization is
also applicable.
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Appendix A. SUSY stochastic dynamics

By introducing pi ≡ −i∂/∂si in (3.3), the time evolution of the probability P(s, t) (s ≡ {s})
is expressed with the Fokker–Planck equation [3]

∂P/∂t = −�0

∑
i

pi[pi − iβ∂E/∂si] ≡ −HFPP (A.1)

where the non-Hermitian FP operator is written as

HFP = �0

∑
i

B+
i B

−
i (A.2)

by formally introducing the creation and annihilation operators B+
i ≡ pi and B−

i ≡
pi − iβ∂E/∂si . Here note that these two operators are not Hermitian to each other. Using a
(non-unitary) transformation matrix T ∗ (≡ exp{−βE(s)/2}), the following Hermitian forms
are obtained:

B∗±
i ≡ T ∗−1B±

i T
∗ = pi ± (iβ/2)∂E/∂si

H ∗
FP ≡ T ∗−1HFPT

∗ = �0

∑
i

B∗+
i B

∗−
i . (A.3)

As a result, the eigenvalues of H ∗
FP are non-negative. For zero eigenvalues, the right (left)

eigenvector of HFP is proportional to the canonical weight Peq = e−βE (1, respectively).
In order to be able to choose randomly one pattern out of the pattern set {ξ}, introduce 2N

fermions {a+
i , ai} and SUSY operators

Q+ ≡
∑
i

B−
i a

+
i Q− ≡

∑
i

B+
i ai (A.4)

and define

Q1 ≡ Q+ + Q− Q2 ≡ (Q+ −Q−)/i NF ≡
∑
i

a+
i ai . (A.5)

Then the following relations are derived:

(Q±)2 ≡ 0 [NF ,Q
±]− = ±Q±

HFP = �0

[∑
i

pi(pi − iβ∂E/∂si) +
∑
ij

a+
i ajβ∂

2E/∂si∂sj

]
.

(A.6)

Within the framework of the SUSY fields, it is easily shown that the following (charge and
fermion number) conservation relations hold:

[HFP,Q
±]− = 0 [HFP, NF ]− = 0 (A.7)

and that the actual eigenvectors are described as

|0〉 ≡ N−1e−βE(s) ⊗ |F0〉
〈0| ≡ N−11 ⊗ (a − b)〈F0| (A.8)

where N−1 denotes the normalization constant, ⊗ the direct product, and |F0〉 (〈F0|) the
right (left) eigenvector for the fermion fields with zero eigenvalue (respectively). Note that the
expectation values of {Q±, NF } are always conserved.
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According to quantum theory, correlation functions for neurons are expressed as

〈Oa(t + τ)Ob(t)〉T = tr
[
eiπNF e−THOae−τHObe

τH
]

=
∑
ij

(−1)NFie−T εi−τ(εj−εi)〈i|Oa|j〉〈j |Ob|i〉 (A.9)

where 〈 〉T denotes the environmental (thermal) average, H abbreviates HFP and εk = εk for
k = i, j .

The time evolution of these correlation functions is also derived as follows:

∂/∂τ 〈Oa(t + τ)Ob(t)〉T = �0 tr[eiπNF e−THOae−τH [[Ob,Q
+]−,Q−]+eτH ]

−�0 tr[eiπNF e−TH [[Oa,Q
+]−,Q−]+e−τHObe

τH ] (NF = NF ) (A.10)

in particular, for Oa = Ob ≡ sk

∂/∂τ 〈sk(t + τ) sk(t)〉T = i�0[〈sk(t + τ) pk(t)〉T − 〈pk(t + τ) sk(t)〉T].

These relations are called the fluctuation–dissipation theorem (FDT).
From the properties of the ground state (〈0|pi = 〈0|a+

i = 0), it is also shown that the
following causality relations hold for any operation O:

〈pi(t + τ)O(t)〉 = 〈a+
k (t + τ)O(t)〉 = 0

lim
τ→0+

〈si(t + τ) pi(t)〉 = i

lim
τ→0+

〈ai(t + τ) a+
i (t)〉 = 1.

(A.11)

By applying the method of path integration to the FP equation in the superspace, the
partition functions are obtained:

Z =
∫

e−sD[s]D[p]D[η]D[η̄]

S =
∫ T

0
dt

[
�−1

0

∑
i

([η̇i η̄i + pi ṡi − p2
i ) +

∑
i

(∂E/∂si)pi +
∑
i,j

(∂2E/∂si∂sj )ηi η̄j

] (A.12)

where η, η̄ are fermionic variables (ηη = η̄η̄ = 0, ηi η̄j = −η̄j ηi (i �= j ), etc) and the dot
denotes a time derivative.

Let us define the superfield φi and its arguments a in the superspace as

φi ≡ si + θ̄ηi + η̄iθ + piθ̄θ a ≡ (ta,
˙̄θa, θa) (A.13)

using anticommuting Grassmann variables θ̄ , θ . Here the superspace delta and the Grassmann
delta functions are defined, respectively, as

δ(a − b) = δ(ta − tb)δ
2(Fa −Fb) δ2(Fa −Fb) = (θ̄a − θ̄b)(θa − θb). (A.14)

Then the final expression for the SUSY stochastic dynamics is expressed as follows:

Z =
∫
D[φ]e−Sk−Sp

Sk ≡ Sk ≡ − 1
2

∫
dθ dθ̄ dt

∑
i

φiD
(2)φi

Sp ≡ Sp ≡
∫

dθ dθ̄ dt E(φ)

(A.15)
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with

D(2) ≡ 2∂2/∂θ∂θ̄ + 2θ∂2/∂θ̄∂t − ∂/∂t. (A.16)

All neuron correlation and response functions of the system are included in the SUSY
correlation function

〈Q(a, b)〉 = 1/N
∑
i

〈φi(a) φi(b)〉 (A.17)

because of the definition of φi in (A.13).

Appendix B. Derivation in the case of a synaptic junction of order m = 2

We consider the neural system with m = 2 in the expression (2.1). To linearize the partition
function of the system with respect to ξ for the sake of the trace on {ξ}, the Gaussian integrals
are used:∫
D[m] exp

[
−βN

{
1
2 (m

µ)2 −mµ1/N
∑
i

ξ
µ

i si

}]
= exp

[
(β/N)

∑
i<j

ξ
µ

i ξ
µ

j sisj

]
. (B.1)

In this step the neuron states {s} are replaced by the SUSY fields {φ} in (A.13), as

(B.1) →
∫
D[M] exp

[
−βN

{
1
2

∫
da dbMµ(a)Mµ(b)δ(a − b)

−
∫

da Mµ(a)1/N
∑
i

ξ
µ

i φ(a)

}]
(B.2)

and the constraints for the OPs {rab, qab} and for the spherical neuron states are imposed:∫
D[R∗/(2π)]D[R] exp

[
−i/2

∫
da db R∗(a, b)

{
R(a, b)−N/p

∑
µ>1

Mµ(a)Mµ(b)

}]
∫
D[Q∗/(2π)]D[Q] exp

[
−i/2

∫
da dbQ∗(a, b)

{
Q(a, b)− 1/N

∑
i

φi(a)φi(b)

}]
∫
D[ ¯̄Q] exp

[
−i/2

∫
da Q(a){ ¯̄Q(a, a)− 1}

]
.

(B.3)

Then, by taking into account averages over both the recalling pattern (µ = 1) and the non-
recalling ones (µ = 2, 3, . . . , p), the leading expression for the partition function in N is
obtained as follows:

Z =
〈〈∫

D[M1]D[R∗/(2π)]D[R]D[Q∗/(2π)]D[Q]D[Q]e−s
〉〉

{ξ}

S/(βN) = 1
2

∫
da dbM1(a)M1(b)δ(a − b) + (p − 1)/(2βN) tr ln)∗

+i/(2βN)
∫

da db R∗(a, b)R(a, b) + i/(2βN)
∫

da dbQ∗(a, b)Q(a, b)

−i/(2βN)
∫

da ¯̄Q(a)[1 −Q(a, a)] −W/(βN)

(B.4)
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where

exp(−W) ≡
〈〈∫

D[φ] exp

[
βN

{∫
da M1(a)φ(a)ξ 1

−1/(2βN)
∫

da db φ(a)κ(a, b)φ(b)

}]〉〉
ξ1

κ(a, b) ≡ �−1
0 D(2)(a)δ(a − b)− i ¯̄Q(a, b)

¯̄Q(a, b) ≡ Q∗(a, b)− iβ2N
∑
µ>1

Mµ(a)Mµ(b)

(B.5)

and∫
D[Mµ] exp

[
(−βN/2)

∫
da dbMµ(a){(1 − β)δ(a − b)

−βQ(a, b)− i/(βp)R∗(a, b)}Mµ(b)

]

≡
∫
D[Mµ] exp[(−βN/2)

∫
da dbMµ(a))(a, b)Mµ(b)] (µ > 1)

(B.6)

i.e.

)(a, b) ≡ (1 − β)δ(a − b)− βQ(a, b)− i/(βp)R∗(a, b). (B.7)

Using the relation (B.4), the neuron correlation functions are evaluated as

〈Q(a, b)〉 =
∫
D[Q]Q(a, b)e−s = i2∂ lnZ/∂Q∗(a, b).

We consider the evaluation of S in the large-N limit, i.e. the saddle-point approximation. If
there is a single saddle point of the system the correlation functions take the saddle-point value

lim
N→∞

〈Q(a, b)〉 = 〈Q(a, b)〉|saddle point. (B.8)

At the saddle point the system has the following extremum values:

(a) ∂S/∂M1(a) = 0 M1(a) = 〈〈ξ 1〈φ(a)〉〉〉
(b) ∂S/∂Q̄(a, b) = 0 Q(a, b) = 〈〈〈φ(a)〉〈φ(b)〉〉〉 (a �= b)

(c) ∂S/∂Q(a, b) = 0 Q̄(a, b) = i(p − 1)/2〈〈∂ tr ln)∗/∂Q(a, b)〉〉

= −iβ2N

〈〈∑
µ>1

Mµ(a)Mµ(b)

〉〉

= −ipβ2R(a, b) (a �= b)

(d) ∂S/∂R∗(a, b) = 0 R(a, b) = N/p

〈〈∑
µ>1

Mµ(a)Mµ(b)

〉〉
(a �= b)

(e) ∂S/∂R(a, b) = 0 R∗(a, b) = 0 (a �= b)

(f) ∂S/∂Q(a, b) = 0 Q(a, a) = 1

(B.9)

where the average over the recalling pattern ξ 1 is denoted by

〈〈 〉〉 = 〈〈 〉〉ξ1. (B.10)
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The first relation (a) expresses the retrieval OP, i.e. the overlap between the recalling pattern
and the mean neuron states; (b) denotes the neuron glass OP, i.e. the overlap of the averaged
neuron states; (d) denotes the overlap of the retrievals. The last relation in (c) is derived using
expression (d). Using relation (e) the transfer matrix (B.7) is rewritten as

)0(a, b) ≡ (1 − β)δ(a − b)− βQ(a, b). (B.11)

Relation (f) expresses the spherical neuron states.
Now let us mention a causal-supersymmetric delta function δcs(a − b) written in (B.11).

This function is defined for any function F(|τ |) such as F(0) = 1 and limτ→∞ F(|τ |) = 0:

δcs(a − b) = lim
=→∞

[
1 + 1

2 (θ̄a − θ̄b){θa + θb − (θa − θb)H(ta − tb)}∂/∂ta
]
F(=|ta − tb|)

(B.12)

using the relation a ≡ (ta, θ̄a, θa) and the sign function of τ , H(τ). For example, δcs = 1 for
a = b.

We define

Vo(a, b) ≡ δcs(a − b) V1(a, b) ≡ 1 (B.13)

and consider the symmetric solutions

m ≡ M1(a) q ≡ Q(a, b) r ≡ R(a, b) (B.14)

independent of the variables a, b.
The matrix (B.11) and its inverse matrix are expressed as follows:

)0(a, b) = (1 − β)V0(a, b)− βq[V1(a, b)− V0(a, b)]

)−1
0 (a, b) = [1 − β(1 − q)]−2[{1 − β(1 − 2q)}V0(a, b) + βq{V1(a, b)− V0(a, b)}].

(B.15)

The expression (B.5) is written as

exp(−W0) ≡
〈〈∫

D[φ] exp

[
βN

{∫
da M1(a)φ(a)ξ 1

+(αβr/2)
∫

da db φ(a)φ(b)− (αβr/2)
∫

da φ2(a)

}]〉〉
. (B.16)

As a simple case, consider the discrete limit of neuron states S = ±1. The expression
(B.16) is rewritten as

exp(−W0) ≡
[〈〈∑

[φ]

exp

{
β

∫
da M1(a)φ(a)ξ 1

+(αβ2r/2)
∫

da db φ(a)φ(b))

}〉〉
exp(−αβ2r/2)

]N

=
[〈〈∫

D[z] exp{−1/2z2 + tr ln ch β[z(αr)1/2 + m1ξ 1]}
〉〉

exp(−αβ2r/2)

]N
.

(B.17)

The extremum conditions of S for the set of OPs {m1, r, q} yield the set of coupled equations
for OPs {m1, r, q}, i.e.

(a′) ∂S/∂m1 = 0 m =
∫
Dz〈〈ξ th[β(z(αr)1/2 + ξm)]〉〉
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(b′) ∂S/∂r = 0 q = 1 − (T /α)

∫
Dzz〈〈(α/r)1/2 th[β(z(αr)1/2 + ξm)]〉〉

=
∫
Dz〈〈th2 β[(z(αr)1/2 + ξm)]〉〉

(c′) ∂S/∂q = 0 r = q/[1 − β(1 − q)]2

(B.18)

where {m1, ξ 1} are denoted by {m, ξ}, and Dz ≡ exp(−z2/2) dz/(2π)1/2. The first relation
(a′) is easily derived from differentiation of (B.4) and (B.17). The second one (b′) is also
obtained from the differentiations of the fourth term on the right-hand side of (B.4) and the
terms on right-hand side of (B.17). The last relation (c′) is derived by inserting the term )−1

0
and the derivative ∂)0/∂q of (B.15) in expression (c) of (B.9).

The following average calculation over the recalling pattern ξ is easily performed by
making a change of variables z → ξz. The final expressions are as follows:

m =
∫
Dz th β(z(αr)1/2 + m)

q =
∫
Dz th2 β(z(αr)1/2 + m).

(B.19)

Finally, we derive the eigenvalues of the quadratic fluctuations around the saddle point.
The differentiation of S in (B.4) with respect to Q(a, b) leads to the relation

�−1
0 D(2)(a)δ(a − b) + i ¯̄Q(a)δ(a − b) + Q−1(a, b) = 0 (B.20)

where we use the fact that the term W is expressed as a sum over connected diagrams with
propagator κ−1 and that the stationarity of S with respect toQ(a, b) gives relation (b) of (B.10);

Q(a, b) = iδW/δQ̄(a, b) = 〈φ(a) φ(b)〉. (B.21)

Neglecting the kinetic term, we multiply both sides of (B.20) by δ(a − b):

−iδ(a − b) ¯̄Q(a) = δ(a − b)Q−1(a, b).

Substituting this expression into (B.20) and differentiating with respect toQ(c, d) leads to the
eigenvalue equation

()1 −))δq(a − b) + c1c2

[ ∫
dc δq(a, c) +

∫
dd δq(d, b)

]
+ c2

2

∫
dc dd δq(c, d)

−δ(a − b)

[
2c1c2

∫
dc δq(a, c) + c2

2

∫
dc dd δq(c, d)

]
= 0 (B.22)

where

c1 ≡ β[1 − β(1 − q)]−1 c2 ≡ βq[1 − β(1 − q)]−2

δq(a, a) = 0 )1 ≡ β[1 − β(1 − q)]−2
(B.23)

using (B.15). The relation (B.22) gives the following three eigenvalues:

)1 for (a)
∫

da δq(a, b) =
∫

da δq(b, a) = 0

)2 ≡ )1 − 2c1c2 for (b)
∫

da db δq(a, b) = 0 except (a)

)3 ≡ )2 for (c)
∫

da db δq(a, b) �= 0 except (a).

(B.24)
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In general, the stability matrix for the symmetric solutions has the general structure

M =
(
A(ab, cd) C(ab, cd)

C(ab, cd) B(ab, cd)

)

where

A(ab, cd) = ∂2S/∂Q(a, b)∂Q(c, d)

B(ab, cd) = ∂2S/∂R(a, b)∂R(c, d)

C(ab, cd) = ∂2S/∂Q(a, b)∂R(c, d)

(B.25)

which are completely similar to those obtained in the replica method [4]. In a similar way, the
stability of the system can be discussed using the relation

δQ(a, b) = D(a, b) δR(a, b) = κ(a, b) (B.26)

under the constraint∫
dbD(a, b) = 0 for all a. (B.27)

Finally, the eigenvalues λ are obtained as

λ = 2αβλ̃

λ̃± = −1/2(u + v)± [1/4(u + v)2 + 1 − uv]1/2
(B.28)

where

u ≡ αβ2〈〈(1 − 〈s〉2)2〉〉 v ≡ [1 − β(1 − q)]−2. (B.29)

When the inverse environment parameter, i.e. temperature T is higher than the glass-phase
temperature Tg (= 1 + α1/2), the OP q is null and uv = αβ2/(1 − β)2 < 1. Therefore, λ−
is negative and λ+ positive in this regime. The change of sign of λ+ corresponds to the RSB,
which occurs on the boundary of uv = 1. These results coincide with those obtained in the
replica method.

Appendix C. Derivation in the case of a synaptic junction of order m = λ + 1

In this neuron model the postsynaptic state at time t + 1 is supposed to be determined by the
local field at time t in (4.14):

Si(t + 1) = sgn(hi(t)) (C.1)

for the ith neuron. Using the local stability condition (4.16) the cost function Hi[J ] and the
partition function Zi at the ith neuron are expressed as follows:

Hi[J ] =
p∑

µ=1

θ(κ − γ
µ

i [J ])

Zi =
〈〈∫

D[J ]ρ[J ]
p∏

µ=1

θ(κ − γ
µ

i [J ])

〉〉
{ξ}
.

(C.2)

The density of state ρ[J ] is given by

ρ[J ] = δ

(
M−1

∑
[J ]

J 2
iJ − 1

)/∫
D[J ]δ

(
M−1

∑
[J ]

J 2
iJ − 1

)
(C.3)
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and averaging over the patterns {ξ}, 〈〈 〉〉{ξ}, leads to the OP

qαβ = M−1
∑
[J ]

J αiJ J
β

iJ (C.4)

in the replica method.
In order to transform these relations into the superspace representation, the following

replacements:

JiJ → φJ

qαβ → Q(a, b) = M−1
∑
[J ]

φJ (a)φJ (b) N → M (C.5)

and the constraint for Q(a, b) are used. The partition function is rewritten as

Zi =
〈〈∫

D[φ]D[ ¯̄Q/(2π)]D[Q]D[Q∗/(2π)]D[x]D[x∗/(2π)]

× exp

[
i
∫

da
∑
µ

x∗µ(a)
{
xµ(a)−M−1/2

∑
[J ]

φJ (a)ξ
µ

j1 . . . ξ
µ

jλ

}

+i
∫

da Q(a)

{
M−1

∑
[J ]

φ2
J (a)− 1

}

+i/2
∫

da dbQ∗(a, b)
{
Q(a, b)−M−1

∑
[J ]

φJ (a)φJ (b)

}]〉〉
{ξ}

(C.6)

where jk ≡ jk for k = 1, . . . , λ. Using the identity exp(−iξx) = cos x(1 − iξ tan x), taking
the trace over ξ and approximating ln cos x ≈ ln(1 − x2/2) ≈ −x2/2, we can express the
leading terms of Zi in N , as

Zi =
∫
D[ ¯̄Q/(2π)]D[Q]D[Q∗/(2π)] exp(−S)

S ≡ S1 − i/2
∫

da dbQ∗(a, b)Q(a, b) + i
∫

da ¯̄Q(a) + W

S1 ≡ −p ln
∫ ∞

κ

D[x/(2π)]D[x∗] exp

[
−
∫

da db
{

1
2x

∗(a)x∗(b)δ(a − b)

+ 1
2Q(a, b)x

∗(a)x∗(b)− ix∗(a)x(a)δ(a − b)
}]

eW ≡
∫
D[φ] exp[−1/(2M)

∑
[J ]

∫
da db φJ (a)κ

∗(a, b)φJ (b)]

κ∗(a, b) ≡ �−1
0 D(2)(a) = δ(a − b) + iQ∗(a, b)− i2Q(a)δ(a − b).

(C.7)

In the limit N → ∞, using the saddle-point method, consider the symmetric solutions

¯̄Q ≡ ¯̄Q(a) Q∗ ≡ Q∗(a, b) q ≡ Q(a, b). (C.8)

Neglecting the first term in κ∗(a, b), integrate over φ in W :

W ≈ ln(det)1)
−1/2

)1 ≡ −i2 ¯̄QV0(a, b) + iQ∗[V1(a, b)− V0(a, b)]

)−1
1 ≡ (2 ¯̄Q + Q∗)−2[i(2 ¯̄Q + 2Q∗)V0(a, b) + iQ∗{V1(a, b)− V0(a, b)}].

(C.9)
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Next, integrate over x∗ in S1:

−S1/p = ln
∫ ∞

κ

D[x/(2π)](det)2)
−1/2 exp

[
− 1

2

∫
da db x(a))−1

2 (a, b)x(b)

]

where

)2(a, b) = V0(a, b) + q[V1(a, b)− V0(a, b)]

)−1
2 (a, b) = (1 − q)−2[(1 − 2q)V0(a, b)− q{V1(a, b)− V0(a, b)}].

(C.10)

Furthermore, the exponential term is evaluated as∫ ∞

κ

D[x/(2π)] exp

[
− 1

2

∫
da db x(a)x(b)δcs(a − b)(1 − q)−1

+ 1
2

(∫
da x(a)

)2

q(1 − q)−2

]

=
∫ ∞

κ

D[x/(2π)]
∫
D[z/(2π)] exp

[
− 1

2

∫
da db x2(a)δcs(a − b)(1 − q)−1

−
∫

da x(a)zq1/2(1 − q)−1 − 1
2z

2

]

≈
∫ ∞

−∞
dz/(2π)1/2 exp[−z2/2]

∫ ∞

κ

D[x/(2π)]

× exp

[
−{2(1 − q)}−1

{∫
da x(a) + q1/2z

}2]
. (C.11)

Therefore, the following relation is obtained:

−S1/p = ln

[
(det)2)

−1/2
∫ ∞

−∞
DzH(τ)

]
(C.12)

using

t ≡ [q1/2z + x]/(1 − q)1/2 Dz ≡ exp(−z2/2) dz/(2π)1/2

τ ≡ (q1/2z + κ)/(1 − q)1/2 H(τ) ≡
∫ ∞

τ

Dt

where H(x) ≡ 1
2 erfc(x/

√
2) and the complementary error function is related to the error

function as erfc(x) = 1 − erf(x).
The saddle point is given by the following extremum conditions:

∂S/∂Q∗(a, b) = ∂S/∂ ¯̄Q(a) = ∂S/∂Q(a, b) = 0. (C.13)

The first and the second conditions give a set of coupled equations

i + A + FB = 0 iq + A− 2EB = 0 (C.14)

using A ≡ (2 ¯̄Q + Q∗)−1 and B ≡ A2. Their solutions are obtained as follows:

2 ¯̄Q = i(1 − 2q)(1 − q)−2 Q∗ = iq(1 − q)−2. (C.15)

The third condition in (C.13) leads, in the same way as (B.20)–(B.24), to

�−1
0 D(2)(a)δ(a − b)− i2 ¯̄Q(a)δ(a − b) + Q−1(a, b) = 0
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which has the following eigenvalues of the quadratic fluctuations around the saddle point:

)1 = (1 − q)−2 for (a) in (B.24)

)2 = )3 = )1 − 2q(1 − q)−3 for (b) and (c) in (B.24).
(C.16)

In order to understand the dynamic behaviour of the system (λ > 1), we consider the
same probability P(m(a)|m(b)) as that in the Kohring model [6]. It is the probability of the
system transferring the state with overlap m(a) at time t = a from m(b) at time t = b. Here
we suppose that {m(a),m(b)} denote the overlap of a neuron state with one of the teacher
patterns, i.e. the recalling pattern and that the other patterns are the non-recalling ones:

P(m(a)|m(b)) =
∫
D[si(b)]δ

(
m(a)−N−1

∑
i

sgn{ξihi(b)}
)

×δ
(
m(b)−N−1

∑
j

ξj sj (b)

)/∫
D[si(b)]δ

(
m(b)−N−1

∑
j

ξj sj (b)

)
.

(C.17)

Using the SUSY stochastic dynamics we obtain the final result

m(a) =
∫ ∞

κ

Dz erf(zmλ(b)/{2(1 −m2λ(b))}1/2)

+ 1
2 erf(κmλ(b)/{2(1 −m2λ(b))}1/2) erfc(−κ/21/2) (C.18)

whose derivation is omitted here because the method used is similar to that mentioned in
appendix B and the calculation process is too long. Expression (C.18) coincides with that
derived by means of the replica method [6].
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